高级检索

ISSN1001-3806CN51-1125/TN 网站地图

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

白光辐照多光谱CCD的干扰效应研究

娄小程 李晓英 牛春晖 郎晓萍

引用本文:
Citation:

白光辐照多光谱CCD的干扰效应研究

    作者简介: 娄小程(1994-),女,硕士研究生,现主要从事激光干扰方面的研究.
    通讯作者: 李晓英, lixiaoying@bistu.edu.cn
  • 中图分类号: TP212.9;TN249

Study on the interference effect of white light irradiation multispectral CCD

    Corresponding author: LI Xiaoying, lixiaoying@bistu.edu.cn ;
  • CLC number: TP212.9;TN249

  • 摘要: 为了研究多光谱CCD相机的干扰效果,分别采用氙灯(白光)、671nm激光、473nm激光和532nm激光对多光谱CCD相机进行干扰实验,提取了红、绿、蓝三通道下的干扰图,并对干扰效果进行了分析,最后利用光生载流子的扩散模型对白光辐照多光谱CCD进行仿真。结果表明, 白光辐照多光谱CCD相机时,红、绿、蓝三通道会同时被干扰,干扰效果明显优于单波长的干扰效果;当白光的入射功率为10.5μW时,白光辐照多光谱CCD的饱和像元数为2382pixel,随着入射功率的增大,多光谱CCD的饱和像元数也逐渐增加,当白光的入射功率为980μW时,白光辐照多光谱CCD的饱和像元数稳定在320078pixel;多光谱CCD对各个波长连续激光干扰响应程度从大到小依次为白光、532nm、473nm、671nm;仿真所得干扰图以及饱和像元数随激光功率的变化关系曲线与实验结果基本相符。该结果有助于多光谱CCD相机干扰机理的深入研究。
  • Figure 1.  Multi-spectral CCD camera

    Figure 2.  Internal structure of multispectral CCD

    Figure 3.  a—Bayer matrix ??b—5×5 deBayer

    Figure 4.  Interference experimental optical path of multispectral CCD irradiated by single wavelength laser

    Figure 5.  Imaging images of 671nm laser irradiated multi-spectral CCD and monochromatic images of three channels

    Figure 6.  Imaging images of 473nm laser irradiated multi-spectral CCD and monochromatic images of three channels

    Figure 7.  Imaging images of 532nm laser irradiated multi-spectral CCD and monochromatic images of three channels

    Figure 8.  Spectral response curve of multispectral CCD

    Figure 9.  Interference experimental optical path of white light irradiation multispectral CCD

    Figure 10.  Image of white light irradiated multi-spectral CCD

    Figure 11.  White light irradiated multi-spectral CCD image and three-channel monochromatic image

    Figure 12.  Relation curve of saturation image element and laser power of multi-spectral CCD

    Figure 13.  Electronic overflow mode

    Figure 14.  935μW white light disturbs color CCD image

    Figure 15.  Simulation of 935μW white light interfering color CCD

    Figure 16.  Relation curve between saturated image element and laser power of multi-spectral CCD radiated by white light

    博亿堂网站app_博亿堂游戏客户端-官网推荐?
  • [1]

    CONG L Y. An evaluation method of jamming effect on multispectral imaging reconnaissance equipment[J]. Optoelectronic Technology Application, 2017, 32(4): 57-59(in Chinese). 
    [2]

    HUANG H T. Summary and prospect of aviation reconnaissance technology[J]. Science and Technology Wind, 2019(24): 3(in Chin-ese).
    [3]

    SONG D Sh, GUO L, GUO B T, et al. Modeling and simulation of supercontinuum laser interference on multicolor CCD detector[J]. Applied Optics, 2017, 38(6): 1018-1024(in Chinese).
    [4]

    XIU J H, HUANG P, LI J, et al. Radiometric calibration of large area array color CCD aerial mapping camera[J]. Optics and Precision Engineering, 2012, 20(6): 1365-1373(in Chinese). doi: 10.3788/OPE.20122006.1365
    [5]

    LIN J Y, SHU R, HUANG G H, et al. Research on laser damage threshold of CCD and CMOS image sensor[J]. Journal of Infrared and Millimeter Wave, 2008, 27(6): 475-478(in Chinese). 
    [6]

    TANG C. Transientresponse of MOS capacitors under localized photoexcitation[J]. Transcations on Electron Devices, 1974, 21(3): 202-209. doi: 10.1109/T-ED.1974.17897
    [7]

    PECKERAR M C, BAKER W D, NAGEL D J. X-ray sensitivity of a charge-coupled-device array[J]. Journal of Applied Physics, 1977, 48(6): 2565-2569. doi: 10.1063/1.323974
    [8]

    ZHANG C Z, WATKINS S E, WALSER R M, et al. Laser-induced damage to silicon charge-coupled imaging devices[J]. Optical Engineering, 1991, 30(5): 651-656. doi: 10.1117/1.2221305
    [9]

    ZHANG C Z, BLARRE L, WALSER R M, et al. Mechanisms for laser-induced functional damage to silicon charge-coupled imaging sensors[J]. Applied Optics, 1993, 32(27): 5201-5210. doi: 10.1364/AO.32.005201
    [10]

    ZHANG Ch, ZHANG W, WANG B, et al. Experimental study on the interference of different wavelength laser to CCD[J]. Laser Technology, 2014, 38(6): 826-829(in Chinese). 
    [11]

    SHAO M, ZHANG L, ZHANG L L, et al. Comparative study on the interference effect of 1.06μm laser on CCD and CMOS cameras[J]. Applied Optics, 2014, 35(1): 163-167 (in Chinese). 
    [12]

    CHEN D Zh, QING G B, ZHANG Ch Q, et al. Saturation interference effect of laser on CCD solid state camera[J]. Laser Technology, 1997, 21(3): 146-148(in Chinese).
    [13]

    WANG Sh Y. Research and fuzzy evaluation of laser interference damage to CCD detector[D]. Changchun: Graduate School of Chinese Academy of Sciences (Changchun Institute of Optics, Precision Machinery and Physics), 2002: 52-56(in Chinese).
    [14]

    ZHANG Zh. Experimental study on laser irradiation effect of visible light CCD[D]. Changsha: University of Defense Science and technology, 2005: 19-32(in Chinese).
    [15]

    YANG H B, CAI J. Experimental study on CCD irradiated by 532nm pulse laser with different pulse width[J]. Application of Optoelectronic Technology, 2017, 32(4): 30-32(in Chinese).
    [16]

    LIU Z J, LU Q Sh, JIANG Zh P, et al. Research on local damage effect of CCD image sensor irradiated by laser[J]. Laser Technology, 1994, 18(6): 344-347(in Chinese).
    [17]

    LUO Q. Research on interference effect of wide spectrum light source on visible CCD[D]. Changsha: University of Defense Science and Technology, 2008: 29-40(in Chinese).
    [18]

    YANG Ch. Research on LED chroma measurement method based on color camera[D]. Xi'an : Xi'an University of Electronic Science and Technology, 2010: 10-17(in Chinese).
    [19]

    GAO R, NIU Ch H, LI X Y. Experiment and mechanism analysis of 632nm laser interference on CCD and CMOS[J]. Laser Journal, 2016, 37(9): 5-9(in Chinese). 
    [20]

    ZHANG Y N, NIU Ch H, ZHAO Sh, et al. Research on interference of near infrared laser on image sensor detector[J]. Laser Technology, 2020, 44(4): 418-423(in Chinese).
    [21]

    QI F J. Research on the crosstalk phenomenon of laser interference with inter row transfer CCD[J]. Semiconductor Optoelectronics, 2014, 35(1): 23-25(in Chinese).
  • [1] 张亚男牛春晖赵爽吕勇 . 近红外激光对图像传感探测器的干扰研究. 激光技术, 2020, 44(4): 418-423. doi: 10.7510/jgjs.issn.1001-3806.2020.04.004
    [2] 张超张伟王滨万勇薛亮平李燕凌 . 不同波长激光对CCD的干扰性实验研究. 激光技术, 2014, 38(6): 826-829. doi: 10.7510/jgjs.issn.1001-3806.2014.06.022
    [3] 张超王滨廖志烨衣学斌万勇张伟 . 脉冲激光干扰面阵CCD成像系统的实验研究. 激光技术, 2014, 38(5): 619-622. doi: 10.7510/jgjs.issn.1001-3806.2014.05.009
    [4] 万勇夏惠军曾钦勇苏心智韩凯朱大勇 . 基于“猫眼效应”的Nd:YAG激光谐振腔. 激光技术, 2005, 29(2): 194-195,224.
    [5] 臧寿洪白云塔张丽霞 . 海面激光反射特性测量方法研究. 激光技术, 2010, 34(4): 535-537,541. doi: 10.3969/j.issn.1001-3806.2010.04.028
    [6] 李文龙戈海龙任远成巍 . 图像处理技术在激光熔池温度检测的应用. 激光技术, 2018, 42(5): 599-604. doi: 10.7510/jgjs.issn.1001-3806.2018.05.004
    [7] 张海庄姚梅雷萍李鹏曾庆平 . 远场激光光斑图像处理方法研究. 激光技术, 2013, 37(4): 460-463. doi: 10.7510/jgjs.issn.1001-3806.2013.04.010
    [8] 汤敏王惠南 . 激光扫描共聚焦显微镜图像的计算机处理. 激光技术, 2007, 31(5): 558-560.
    [9] 冯煦张瑞瑛周萍李松 . 大功率半导体线激光图像处理方法研究. 激光技术, 2010, 34(5): 624-627. doi: 10.3969/j.issn.1001-3806.2010.O5.013
    [10] 苏平牛燕雄李大乾牛海莎李易难张超 . 基于面阵CCD的激光告警系统的图像采集与处理. 激光技术, 2013, 37(3): 394-399. doi: 10.7510/jgjs.issn.1001-3806.2013.03.028
    [11] 王春娴李会山王风忠 . 基于图像的激光熔覆粉末粒子运动行为分析. 激光技术, 2010, 34(3): 300-302,319. doi: 10.3969/j.issn.1001-3806.2010.03.004
    [12] 李辉曹宇刘红波彭冬朱玉坤王坤田捷 . 高速128通道小动物多光谱光声断层成像系统. 激光技术, 2017, 41(5): 669-674. doi: 10.7510/jgjs.issn.1001-3806.2017.05.010
    [13] 李晓龙赵威张雷雷张启鹏康华超刘伟 . 1.06m脉冲激光对TDI-CCD的干扰实验研究. 激光技术, 2015, 39(3): 416-418. doi: 10.7510/jgjs.issn.1001-3806.2015.03.029
    [14] 未永飞杜正春姚振强 . 中值滤波在激光雷达点云数据预处理中的应用. 激光技术, 2009, 33(2): 213-216.
    [15] 崔治邓曙光肖卫初 . 利用HSSIM和残差比阈值的3维激光扫描图像去噪. 激光技术, 2015, 39(5): 669-673. doi: 10.7510/jgjs.issn.1001-3806.2015.05.018
    [16] 杨彩霞周腊吾刘继常伍耀庭 . 激光淬火过程实时检测系统的设计. 激光技术, 2011, 35(3): 334-337. doi: 10.3969/j.issn.1001-3806.2011.03.013
    [17] 盛利民唐霞辉彭浩潘吉兴裴云朱海云 . 冷轧带钢激光拼焊的焊缝在线检测研究. 激光技术, 2015, 39(4): 437-442. doi: 10.7510/jgjs.issn.1001-3806.2015.04.001
    [18] 杨柳杉刘金水刘继常伍耀庭王迎丽 . 基于CCD的激光熔覆熔池宽度的在线检测研究. 激光技术, 2011, 35(3): 315-318. doi: 10.3969/j.issn.1001-3806.2011.03.008
    [19] 吴超王寿松 . 基于轨迹图像的雾滴颗粒运动速度光电测量方法. 激光技术, 2014, 38(2): 214-217. doi: 10.7510/jgjs.issn.1001-3806.2014.02.015
    [20] 翟春婕周桂雪 . 基于智能手机的多光谱指纹图像采集研究. 激光技术, 2021, 45(5): 625-629. doi: 10.7510/jgjs.issn.1001-3806.2021.05.015
  • 加载中
图(16)
计量
  • 文章访问数:  406
  • HTML全文浏览量:  316
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-23
  • 录用日期:  2021-01-04
  • 刊出日期:  2021-11-25

白光辐照多光谱CCD的干扰效应研究

    通讯作者: 李晓英, lixiaoying@bistu.edu.cn
    作者简介: 娄小程(1994-),女,硕士研究生,现主要从事激光干扰方面的研究
  • 北京信息科技大学 仪器科学与光电工程学院,北京 100192

摘要: 为了研究多光谱CCD相机的干扰效果,分别采用氙灯(白光)、671nm激光、473nm激光和532nm激光对多光谱CCD相机进行干扰实验,提取了红、绿、蓝三通道下的干扰图,并对干扰效果进行了分析,最后利用光生载流子的扩散模型对白光辐照多光谱CCD进行仿真。结果表明, 白光辐照多光谱CCD相机时,红、绿、蓝三通道会同时被干扰,干扰效果明显优于单波长的干扰效果;当白光的入射功率为10.5μW时,白光辐照多光谱CCD的饱和像元数为2382pixel,随着入射功率的增大,多光谱CCD的饱和像元数也逐渐增加,当白光的入射功率为980μW时,白光辐照多光谱CCD的饱和像元数稳定在320078pixel;多光谱CCD对各个波长连续激光干扰响应程度从大到小依次为白光、532nm、473nm、671nm;仿真所得干扰图以及饱和像元数随激光功率的变化关系曲线与实验结果基本相符。该结果有助于多光谱CCD相机干扰机理的深入研究。

English Abstract

    • 近些年来,多光谱CCD相机因具有光谱分辨率高、感光度高、识别能力和可靠性强等优点被广泛应用于军事和科研领域[1],其利用景物不同谱段的光谱信息分别成像[2]。与黑白CCD相机相比,多光谱CCD相机能够呈现更加丰富的多色图像,因此广泛应用于广域监视、卫星成像等领域[3-4]。同时由于CCD的灵敏度较高,极容易受到高能量激光的干扰,严重情况下可能会造成CCD永久性损伤,致使其无法输出信号[5], 所以各类激光对CCD图像传感器的干扰研究,已成为国防科研领域的重要研究课题,具有一定的研究意义。

      20世纪70年代以来,国内外陆续展开了各类激光对单通道CCD图像传感器的干扰和损伤的研究。参考文献[6]~参考文献[16]中分别研究了单波长激光对单通道CCD干扰效果。参考文献[17]中研究了宽光谱光源对单通道CCD的干扰,分析了入射条件对面阵CCD干扰效果的影响。随着多光谱CCD相机的出现与发展,多光谱CCD相机在军事、遥感成像等领域逐渐代替了单通道CCD相机。以往研究学者大多是基于对单通道CCD相机的干扰和损伤研究,对激光干扰多光谱CCD相机的研究较少,同时单一波长激光对多光谱CCD的干扰存在一定缺陷,研究作为典型的宽光谱光源的白光对多光谱CCD的干扰具有重要意义。

      本文中主要对白光照射多光谱CCD产生的干扰效果进行了研究。分别采用671nm, 473nm, 532nm等单波长激光与白光光源对多光谱CCD进行干扰实验研究,将它们对多光谱CCD的干扰效果进行了对比分析;同时根据光生载流子扩散模型对白光辐照多光谱CCD进行仿真模拟,丰富了宽光谱光源对多光谱CCD的干扰研究,并为以后的深入研究提供理论基础。

    • 本文中使用的多光谱CCD相机是由SONY公司生产的acA640-120gm Basler ace GigE,如图 1所示。多光谱CCD相机像素数为659×494,像元尺寸为5.6μm×5.6μm。

      Figure 1.  Multi-spectral CCD camera

      多光谱CCD的整体结构类似“三明治”,如图 2所示,依次为“微透镜”、“分色滤光片”、“感光层”。微透镜通过扩展每个像素的感光面积来提高CCD的采光率,分色滤光片实现对多光谱相机成像的色彩信息的合成,感光层实现光电信号的转换和传输[18]。每个像元的感应度不同是因为分色滤光片的作用,多光谱CCD中红色像元的敏感光谱波长范围是620nm~680nm,绿色像元的敏感光谱波长范围是520nm~570nm,蓝色像元的敏感光谱波长范围是425nm~500nm。

      Figure 2.  Internal structure of multispectral CCD

      多光谱CCD相机的分色滤光片运用拜耳矩阵进行颜色识别。在拜耳矩阵中,每个像素都有各自的彩色窗口,以周期方式排列,其中50%为绿色,25%为红色,25%为蓝色,每行交替排列。如图 3a所示,一行使用红绿元素,下一行使用绿蓝元素。

      Figure 3.  a—Bayer matrix ??b—5×5 deBayer

      RGB彩色图像需要每个像素有红、绿、蓝3种颜色,但是在拜耳矩阵中,每个像素只对应一种颜色,丢失的颜色是通过“插值”技术插入的,也称去拜耳化,其原理是提取相邻像素的颜色值,从而估算缺失的颜色。图 3b展示了5×5去拜耳化。

    • 图 4是单波长激光辐照多光谱CCD相机的实验光路图。实验环境为暗室,选用的激光器分别为671nm, 532nm, 473nm激光器。激光经过衰减片的衰减作用后,用分光镜分成两束(分光比为1 ∶1),一束光入射到CCD的靶面中心,干扰图像被传送到计算机记录, 另一束光由功率计接收,由于两束光的功率相同,可通过功率计实时记录干扰CCD的光功率。

      Figure 4.  Interference experimental optical path of multispectral CCD irradiated by single wavelength laser

    • 图 5是波长为671nm、入射功率为746μW的激光干扰多光谱CCD相机的成像图以及红、绿、蓝三通道的单色图。由图 5a图 5b可知,全通道及红色通道的图像被干扰较为严重; 由图 5c图 5d可知,绿色通道及蓝色通道下的干扰区域相对较少,仍有可能从绿色通道或者蓝色通道恢复原图像。

      Figure 5.  Imaging images of 671nm laser irradiated multi-spectral CCD and monochromatic images of three channels

      图 6是波长为473nm、入射功率为380μW的激光干扰多光谱CCD相机的成像图以及红、绿、蓝三通道的单色图。由图 6a图 6c图 6d可发现, 全通道、绿色通道和蓝色通道的图像被干扰较为严重,但图 6b中红色通道下的图像上仍有部分细节。

      Figure 6.  Imaging images of 473nm laser irradiated multi-spectral CCD and monochromatic images of three channels

      图 7是波长为532nm、入射功率为166μW的激光干扰多光谱CCD相机的成像图以及红、绿、蓝三通道的单色图。由图 7a图 7c图 7d可发现, 全通道、绿色通道和蓝色通道的图像已被有效干扰,但图 7b中红色通道下的图像仍能呈现部分细节。

      Figure 7.  Imaging images of 532nm laser irradiated multi-spectral CCD and monochromatic images of three channels

      图 5~图 7可知,单波长激光干扰多光谱CCD相机时,完全干扰某一通道可以实现,但是对红、绿、蓝三通道的同时干扰难以实现,可能从某一通道输出较为清晰的图像,从而恢复原图像。

      图 8是多光谱CCD的光谱响应曲线。横坐标代表波长,纵坐标代表多光谱CCD对各波长的响应度。由图 8可知,多光谱CCD中红色像元的敏感光谱波长范围是620nm~680nm,绿色像元的敏感光谱波长范围是520nm~570nm,蓝色像元的敏感光谱波长范围是425nm~500nm,多光谱CCD的光谱响应曲线很好地解释了不同波长激光辐照多光谱CCD相机时,各个通道干扰情况差异的原因。

      Figure 8.  Spectral response curve of multispectral CCD

    • 图 9是白光辐照多光谱CCD干扰的实验光路图。选用的光源是功率为150W的氙灯(白光),白光的光谱较宽,透过三棱镜可以呈现红、橙、黄、绿、青、蓝、紫7种颜色的光谱,其中,红色的波长为620nm~780nm、橙色波长为600nm~620nm、黄色波长为570nm~600nm、绿色波长为500nm~570nm、青色波长为475nm~500nm、蓝色波长为420nm~475nm、紫色波长为380nm~420nm。实验中白光光束通过透镜1与光阑,缩小光斑;继续通过衰减片与偏振片衰减光强,然后由分光镜将光分成两束(分光比为1 ∶1);一束入射到CCD探测器,另一束光由光功率计接收,实时检测干扰探测器的光功率。干扰效果图传入计算机记录,以备后续处理。

      Figure 9.  Interference experimental optical path of white light irradiation multispectral CCD

    • 图 10是白光对多光谱CCD相机的干扰图。图 10a是入射功率为12.9μW时多光谱CCD受干扰情况;图 10b是入射功率为68μW时多光谱CCD受干扰的图,此时干扰光斑已饱和;图 10c是入射功率为136μW多光谱CCD受干扰的图。图 10b图 10c中的饱和光斑周围存在干扰光斑,这主要是由杂散光引起的,白光光源并未全部辐照在多光谱CCD相机的靶面中心,部分光源辐照在镜筒边缘发生折射和偏转,从而形成较弱的干扰光斑[14]图 10d是激光功率为1.45mW的干扰图像。此时多光谱CCD处于过饱和的状态,由图 10a~图 10d可知,入射功率越大,干扰面积越大,干扰现象越严重。在实验过程中,并未出现饱和串音线,分析是因为氙灯发出的光源较为发散,很难像激光器一样相对集中地辐照在CCD靶面中心。

      Figure 10.  Image of white light irradiated multi-spectral CCD

      图 11是入射功率为328μW时的干扰图。由图 11可知,红、绿、蓝三通道均被完全干扰。相对单波长激光,白光的光谱较宽,压制范围较广,白光对多光谱CCD相机的干扰更加全面,且当需要对目标物体进行干扰时,光谱较宽的白光光源比联合激光干扰更加有效。

      Figure 11.  White light irradiated multi-spectral CCD image and three-channel monochromatic image

      图 12是多光谱CCD饱和像元随激光功率变化的关系曲线。多光谱CCD对各个波长连续激光干扰响应程度从大到小依次为白光, 532nm, 473nm和671nm;当激光功率为250μW时,白光辐照CCD的饱和像元数约200000pixel,约等于532nm, 473nm和671nm辐照CCD的饱和像元数之和;当入射功率为10.5μW时,白光辐照多光谱CCD的饱和像元数为2382pixel,随着入射功率的增大,白光辐照多光谱CCD饱和像元数也逐渐增加; 当入射功率为980μW时,白光辐照多光谱CCD的饱和像元数稳定在320078pixel; 当激光功率为1200μW时,532nm激光对应的饱和像元数基本稳定在310000pixel左右,此时532nm激光的干扰图像已接近于全饱和状态,随着激光功率的继续增加,532nm激光的饱和像元数基本不变;当激光功率为1200μW时,473nm激光对应的饱和像元数多于671nm对应的饱和像元,但两者的干扰程度均未达到最大,随着激光功率的增加,饱和像元数仍在增加。

      Figure 12.  Relation curve of saturation image element and laser power of multi-spectral CCD

    • CCD像元间电子溢出方式如图 13所示。当激光辐照在CCD的某个像元时,会产生光生载流子,产生的光生载流子填充此像元,当此像元被填充满后,光生载流子又会向周围的像元溢出,直到产生的光生载流子全部填充到像元中[19]。CCD的内部存在水平方向的沟阻,致使光生载流子在竖直方向扩散的速度大于水平方向,很好地解释了随着时间和光照强度的增加,在干扰光斑中心出现竖直串音线的原因[20]

      Figure 13.  Electronic overflow mode

      受激光辐照的半导体会吸收光子的能量,当积累的光子能量超过带隙能量时,会发生电子跃迁的现象[20],由此产生的电荷可以用Q表示为:

      $ \mathit{Q} = \mathit{\eta qPAt}{\rm{/(}}\mathit{hv}{\rm{)}} $

      (1)

      式中, q为电子电荷, P为入射光功率,t为光照时间,η为量子效率,A为受光面积,h为普朗克常量,ν是频率。设定一个像元所能存储的最大电荷量是Qth, 则N个饱和像元所能存储的最大电荷Q可表示为:

      $ \mathit{Q} = \mathit{N}{\mathit{Q}_{{\rm{th}}}} $

      (2)

      由此可推导出时间、激光的入射功率和CCD饱和像元数的关系为:

      $ \mathit{N} = \mathit{\eta qPAt}{\rm{/(}}\mathit{hv}{\mathit{Q}_{{\rm{th}}}}{\rm{)}} $

      (3)

      图 14是入射功率为935μW的白光辐照多光谱CCD的干扰图。图 15是根据光生载流子扩散模型得到的入射功率为935μW的白光干扰多光谱CCD的仿真图。可以看出, 当入射功率为935μW时,多光谱CCD相机已被完全干扰,仿真结果和实验干扰结果基本相符。

      Figure 14.  935μW white light disturbs color CCD image

      Figure 15.  Simulation of 935μW white light interfering color CCD

      对白光辐照多光谱CCD的过程进行仿真,设置与实验相同的参量,得到白光辐照多光谱CCD的饱和像元随激光功率变化的关系曲线, 如图 16所示。

      Figure 16.  Relation curve between saturated image element and laser power of multi-spectral CCD radiated by white light

      图 16可知,仿真白光辐照多光谱CCD饱和像元数随激光功率变化的关系曲线与由实验数据所获得的曲线变化趋势基本一致。对于仿真数据和实验数据的偏差可能是: 仿真过程中并未考虑实验过程中杂散光斑对光生载流子扩散的影响,只是针对主要的干扰光斑进行分析;仿真过程中并未考虑因CCD工艺结构中沟道的存在,导致部分溢出的载流子尚未扩散到周围的像元便被排出[21]。但整体来说,仿真所得白光辐照多光谱CCD饱和像元数随激光功率变化曲线与实验数据所得曲线基本吻合,证明此方法具有一定的可靠性。

    • 在激光对多光谱CCD相机的干扰效应实验中,分别采用671nm, 532nm和473nm波长激光与白光辐照多光谱CCD相机,得到了几种光源辐照多光谱CCD相机的干扰图,通过研究发现, 单波长激光干扰多光谱CCD相机时,完全干扰某一通道很容易实现,但是很难同时对红、绿、蓝三通道进行完全干扰;相对单波长激光,白光的光谱较宽,压制范围较广,白光对多光谱CCD相机的干扰更加全面,且当需要对目标物体进行干扰时,光谱较宽的白光光源比联合激光干扰更加有效。绘制了多光谱CCD饱和像元数随激光功率的变化曲线,得出多光谱CCD对各个波长连续光干扰响应程度从大到小依次为白光, 532nm, 473nm和671nm。最后根据光生载流子的溢出方式,利用MATLAB对白光干扰CCD的过程进行仿真,得到白光辐照多光谱CCD的干扰仿真图和仿真白光辐照多光谱CCD相机饱和像元数随激光功率变化的关系曲线,仿真所得关系曲线与实验数据得到的关系曲线基本吻合。本文中将实验与仿真相结合,证明了白光相对于单波长激光对多光谱CCD相机的干扰效果更好,对于丰富宽光谱光源干扰多光谱CCD的效应研究具有一定的现实意义。

参考文献 (21)

目录

    /

    返回文章
    返回