高级检索

ISSN1001-3806CN51-1125/TN 网站地图

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于微球透镜远场超分辨率成像方法研究

林巧文 杨春花 刘红梅 康占成

引用本文:
Citation:

基于微球透镜远场超分辨率成像方法研究

    作者简介: 林巧文(1980-),女,博士,讲师,主要从事超分辨率成像、数字全息以及光学信息处理方面的研究。E-mail: lqw16888@163.com.
  • 基金项目:

    山西大同大学云冈学研究专项基金资助项目 2020YGZX006

    山西省应用基础研究基金资助项目 201801D121071

    山西省应用基础研究基金资助项目 201901D211431

    大同市重点研发计划资助项目 2020019

  • 中图分类号: O436.1

Far-field super-resolution imaging based on microsphere lens

  • CLC number: O436.1

  • 摘要: 在可见光波段,传统光学显微镜的成像分辨率被限制到200nm。为了突破衍射极限,采用了将微球与传统光学显微镜相结合的方法来获得远场超分辨率成像。首先通过理论分析平行光通过微纳结构物体后物光波在空气中的传输,进而分析微球将倏逝波转换成传输波实现远场超分辨的成像机理;其次通过仿真研究了微球的光纳米喷射特性,可知微球光纳米喷射的半径尺寸小于入射光波长的一半;最后搭建了基于微球与传统光学显微镜相结合的超分辨率成像实验系统。结果表明,将蓝光光盘作为被测物体,通过该成像系统可获得100nm的远场超分辨率成像; 该成像系统可以对微纳元件结构进行检测。这一结果对光刻技术、生物医学等领域是有帮助的。
  • Figure 1.  The simplified model of the optical microscopic imaging system

    Figure 2.  The spectrum distribution of the imaging systems

    Figure 3.  The simplified model of the microsphere-based optical microscopic imaging system

    Figure 4.  Simulation results of the photonic nanojet by the microspheres

    a—n=1.46, r=5μm   b—n=1.46, r=26.5μm   c—n=2, r=26.5μm

    Figure 5.  The intensity distribution of the photonic nanojet in the maximum intensity along the vertical direction

    Figure 6.  The light path diagram of the microsphere-based far-field super-resolution imaging system

    Figure 7.  The imaging results of the blu-ray disc

    a—the image of the blu-ray disc by SEM    b—the image of the blu-ray disc by optical microscopy   c—the image of microsphere by optical microscopy&   d—the image of the blu-ray disc by microsphere-based microscopy   e—the magnified rectangle area marked with solid blue line in Fig.7d

    博亿堂网站app_博亿堂游戏客户端-官网推荐?
  • [1]

    YANG J Q, WANG D Y, DONG D F, et al. Laser measurement based evaluation for orthogonal transformation calibration of robot pose[J]. Optics and Precision Engineering, 2018, 26(8): 1985-1993 (in Chinese). doi: 10.3788/OPE.20182608.1985
    [2]

    YANG J Q, WANG D Y, DONG D F, et al. Estimation of pose errors with non-parametric constraint of manipulator in entire workspace domain[J]. Optics and Precision Engineering, 2018, 26(10): 2430-2437 (in Chinese). doi: 10.3788/OPE.20182610.2430
    [3]

    WANG C Y, GAO X D, MA N, et al. Magneto-optical imaging detection of laser welding defects under multi-directional magnetic field excitation[J]. Laser Technology, 2020, 44(5): 592-599 (in Chinese). 
    [4]

    DU L L, GAO X D, ZHANG N F, et al. Analysis on frequency domain characteristics of magneto-optical imaging of laser welding crack[J]. Laser Technology, 2020, 44(2): 226-231 (in Chinese).
    [5]

    ASH E A, NICHOLLS G. Super-resolution aperture scanning microscope[J]. Nature, 1972, 237(5357): 510-512. doi: 10.1038/237510a0
    [6]

    LI W W, LIU Sh P, WANG Zh Y. Fast super-resolution fluorescence microscopy by compressed sensing[J]. Laser Technology, 2020, 44(2): 196-201 (in Chinese).
    [7]

    PENDRY J B. Negative refraction makes a perfect lens[J]. Physical Review Letters, 2000, 85(18): 3966-3969. doi: 10.1103/PhysRevLett.85.3966
    [8]

    FANG N, LEE H, SUN C, et al. Sub-diffraction-limited optical imaging with a silver superlens[J]. Science, 2005, 308(5721): 534-537. doi: 10.1126/science.1108759
    [9]

    LIU Z, DURANT S, LEE H, et al. Far-field optical superlens[J]. Nano Letters, 2007, 7(2): 403-408. doi: 10.1021/nl062635n
    [10]

    LIU Z, LEE H, XIONG Y, et al. Far-field optical hyperlens magnifying sub-diffraction-limited objects[J]. Science, 2007, 315(5819): 1686. doi: 10.1126/science.1137368
    [11]

    WANG Z B, GUO W, LI L, et al. Optical virtual imaging at 50nm lateral resolution with a white-light nanoscope[J]. Nature Communications, 2011, 2(1): 218. doi: 10.1038/ncomms1211
    [12]

    HAO X, KUANG C F, LIU X, et al. Microsphere based microscope with optical super-resolution capability[J]. Applied Physics Letters, 2011, 99(20): 203102. doi: 10.1063/1.3662010
    [13]

    DARAFSHEH A, GUARDIOLA C, NIHALANI D, et al. Biological super-resolution imaging by using novel microsphere-embedded coverslips[J]. Proceedings of the SPIE, 2015, 9337: 933705. 
    [14]

    LUO H, YU H B, WEN Y, et al. Enhanced high-quality super-resolution imaging in air using microsphere lens groups[J]. Optics Letters, 2020, 45(11): 2981-2984. doi: 10.1364/OL.393041
    [15]

    YAN B, SONG Y, YANG X, et al. Unibody microscope objective tipped with a microsphere: Design, fabrication, and application in subwavelength imaging[J]. Applied Optics, 2020, 59(8): 2641-2648. doi: 10.1364/AO.386504
    [16]

    ABBASIAN V, MORADI A. Microsphere-assisted super-resolved mueller matric microscopy[J]. Optics Letters, 2020, 45(15): 4336-4339. doi: 10.1364/OL.395735
    [17]

    YANG S, WANG X Q, WANG J G, et al. Reduced distortion in high-index microsphere imaging by partial immersion[J]. Applied Optics, 2020, 57(27): 7818-7822. 
    [18]

    BEN-ARYEH Y. Tunneling of evanescent waves into propagating waves[J]. Applied Physics, 2006, B84(1): 121-124. 
    [19]

    BEN-ARYEH Y. Superresolution observed from evanescent waves transmitted through nano-corrugated metallic films[J]. Applied Physics, 2012, B109: 165-170. 
    [20]

    LIN Q W, WANG D Y, WANG Y X, et al. Super-resolution quantitative phase-contrast imaging by microsphere-based digital holographic microscopy[J]. Optical Engineering, 2017, 56(3): 034116. doi: 10.1117/1.OE.56.3.034116
    [21]

    LIN Q W. Resolution improvement mechanism and experiment study on digital holographic microscopic imaging[D]. Beijing: Beijing University of technology, 2017: 75-84 (in Chinese).
    [22]

    GOODMAN J W. Introduction to Fourier optics[M]. 3th ed. New York, USA: IEEE, 2005: 34-37.
  • [1] 胡江涛黄峰张雏刘秉琦王元铂 . 超分辨率重构复眼成像技术的研究进展. 激光技术, 2015, 39(4): 492-496. doi: 10.7510/jgjs.issn.1001-3806.2015.04.014
    [2] 房垚鑫郭宝峰马超 . 基于改进点扩散函数的遥感图像超分辨率重建. 激光技术, 2019, 43(5): 713-718. doi: 10.7510/jgjs.issn.1001-3806.2019.05.024
    [3] 沈淦松叶玉堂李昌海 . 一种高分辨率ITO线路缺陷检测系统. 激光技术, 2013, 37(1): 24-27. doi: 10.7510/jgjs.issn.1001-3806.2013.O1.006
    [4] 常山桑志文庄玲 . 基于衍射理论的高斯像面球差的计算与分析. 激光技术, 2012, 36(3): 405-407,412.
    [5] 欧攀刘星孙鸣捷于康龙王治权 . 一种大步长的光学微扫描方法. 激光技术, 2013, 37(3): 293-296. doi: 10.7510/jgjs.issn.1001-3806.2013.03.005
    [6] 雷选华杨克成 . 一种基于FPGA水下激光成像系统的同步控制器. 激光技术, 2010, 34(5): 682-685. doi: 10.3969/j.issn.1001-3806.2010.O5.029
    [7] 陈均溢商思航苗丹江财俊曾延安 . 光电成像系统的绝对光谱响应效率测量及分析. 激光技术, 2021, 45(1): 121-125. doi: 10.7510/jgjs.issn.1001-3806.2021.01.021
    [8] 夏春蕾郑刚戴曙光 . 大景深成像技术及其相移现象的控制. 激光技术, 2008, 32(2): 159-162.
    [9] 王骐迟欣李琦 . 太赫兹自由电子激光器的成像原理及进展. 激光技术, 2006, 30(6): 643-646.
    [10] 李达李云霞蒙文韩晓飞 . 低慢小目标面阵推进式激光成像探测方法研究. 激光技术, 2014, 38(1): 44-48. doi: 10.7510/jgjs.issn.1001-3806.2014.01.010
    [11] 陈德章张华冷杰高建波路英宾陶刚郭嘉伟李萧 . 基于APD面阵探测器的非扫描激光主动成像雷达. 激光技术, 2017, 41(6): 775-778. doi: 10.7510/jgjs.issn.1001-3806.2017.06.001
    [12] 李芮李晓王志斌黄艳飞王耀利张瑞 . 阵列探测器在成像光谱偏振探测技术中的应用. 激光技术, 2014, 38(6): 822-825. doi: 10.7510/jgjs.issn.1001-3806.2014.06.021
    [13] 吴舒哲唐嘉熊亮黄佐华 . 一种基于共轴干涉的相位物体定量成像技术. 激光技术, 2017, 41(2): 275-279. doi: 10.7510/jgjs.issn.1001-3806.2017.02.026
    [14] 韩宏伟张晓晖葛卫龙 . 一种用于水下距离选通成像的变步长扫描方法. 激光技术, 2011, 35(2): 226-229,259. doi: 10.3969/j.issn.1001-3806.2011.02.023
    [15] 王聪毅高向东马女杰张艳喜游德勇 . 激光焊接缺陷多向磁场激励下磁光成像检测. 激光技术, 2020, 44(5): 592-599. doi: 10.7510/jgjs.issn.1001-3806.2020.05.011
    [16] 周宇王天一李文军游承武杨振刚王可嘉刘劲松 . 太赫兹无损检测可视化系统的设计. 激光技术, 2017, 41(3): 351-355. doi: 10.7510/jgjs.issn.1001-3806.2017.03.010
    [17] 杨承曾钦勇朱大勇甘春泉 . 日盲型紫外探测系统中目标定位的研究. 激光技术, 2008, 32(2): 140-142,146.
    [18] 张宝武饶鹏辉霍剑锋余桂英 . VirtualLab Fusion对SNOM光纤探针外部光场分布的仿真. 激光技术, 2017, 41(4): 494-497. doi: 10.7510/jgjs.issn.1001-3806.2017.04.007
    [19] 葛卫龙华良洪张晓晖 . 水体后向散射光能量变化规律的仿真与实验. 激光技术, 2013, 37(6): 756-759. doi: 10.7510/jgjs.issn.1001-3806.2013.06.011
    [20] 王省伟侯天晋周鼎富周昕 . 合成孔径激光雷达. 激光技术, 2008, 32(1): 4-7.
  • 加载中
图(8)
计量
  • 文章访问数:  512
  • HTML全文浏览量:  368
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-27
  • 录用日期:  2021-03-18
  • 刊出日期:  2021-11-25

基于微球透镜远场超分辨率成像方法研究

    作者简介: 林巧文(1980-),女,博士,讲师,主要从事超分辨率成像、数字全息以及光学信息处理方面的研究。E-mail: lqw16888@163.com
  • 1. 山西大同大学 固体物理研究所,大同 037009
  • 2. 山西大同大学 物理与电子科学学院,大同 037009
基金项目:  山西大同大学云冈学研究专项基金资助项目 2020YGZX006山西省应用基础研究基金资助项目 201801D121071山西省应用基础研究基金资助项目 201901D211431大同市重点研发计划资助项目 2020019

摘要: 在可见光波段,传统光学显微镜的成像分辨率被限制到200nm。为了突破衍射极限,采用了将微球与传统光学显微镜相结合的方法来获得远场超分辨率成像。首先通过理论分析平行光通过微纳结构物体后物光波在空气中的传输,进而分析微球将倏逝波转换成传输波实现远场超分辨的成像机理;其次通过仿真研究了微球的光纳米喷射特性,可知微球光纳米喷射的半径尺寸小于入射光波长的一半;最后搭建了基于微球与传统光学显微镜相结合的超分辨率成像实验系统。结果表明,将蓝光光盘作为被测物体,通过该成像系统可获得100nm的远场超分辨率成像; 该成像系统可以对微纳元件结构进行检测。这一结果对光刻技术、生物医学等领域是有帮助的。

English Abstract

    • 在物体结构测量时,有非光学探测和光学测量方式,其中光学测量技术因为具有非接触、测量速度高、系统结构简单等优点被广泛地应用[1-4]。随着纳米技术的快速发展,对成像系统的空间分辨率的要求越来越高。由于携带物体高频细节信息的倏逝波沿着物体表面按指数衰减,在波长量级的距离内很快衰减为0,导致成像系统在远场受到衍射效应的限制。由于倏逝波携带了物体的更多高频细节信息,利用在近场扫描探测的方法可以获得倏逝波实现超越衍射极限的分辨率,如近场扫描光学显微镜和受激发射损耗荧光显微镜[5-6]。1972年,ASH等人通过近场扫描显微镜,获得了超分辨率显微成像,由于其是通过探针在近场区域逐点进行扫描测量物体的信息,耗时长,无法实时地成像[5]。2000年,PENDRY通过介电常数和磁导率均为负数的材料制成了完美透镜将倏逝波放大,实现了在近场突破衍射极限的成像[7]。2004年, 美国加州大学ZHANG团队利用银板制成了近场透镜[8], 为了实现远场超分辨率成像,2007年,该团队首先利用负折射率材料制成的超级透镜将倏逝波放大,然后利用光栅的频移特性将倏逝波转换成传输波,实现远场超分辨率成像[9], 同年,他们使用双曲透镜实现了远场超分辨率成像,其结构必须严格设计,在实际应用时也受到了限制[10]。近年来,利用微球结合普通的光学显微镜在远场实现了突破衍射极限的分辨率,有结构简单、成本低等优点[11-21],吸引了许多国内外众多学者的关注。作者通过折射率为2、半径为26.5μm的钛酸钡微球与光学显微镜相结合, 实现对蓝光光盘的远场超分辨成像。

    • 普通光学显微成像系统记录过程的简化模型如图 1所示。(x, y)为物体所在的平面,垂直于物平面的z轴为光的传播方向,物平面距显微物镜面的距离为d1, 显微物镜面的距离与像面的距离为d2, d1d2满足物像关系。

      Figure 1.  The simplified model of the optical microscopic imaging system

      当用一束平面光波垂直照射被测物体后,在物体表面,即z=0处,物体光波场的分布为[18-22]

      $ \begin{array}{c} u(\mathit{x}, \mathit{y}, 0) = \\ \int_{ - \infty }^{ + \infty } {\int_{ - \infty }^{ + \infty } U } \left( {{\mathit{\boldsymbol{k}}_x}, {\mathit{\boldsymbol{k}}_y};0} \right)\exp \left[ {{\rm{i}}\left( {{\mathit{\boldsymbol{k}}_x}x + {\mathit{\boldsymbol{k}}_y}y} \right)} \right]{\rm{d}}{\mathit{\boldsymbol{k}}_x}{\rm{d}}{\mathit{\boldsymbol{k}}_\mathit{y}} \end{array} $

      (1)

      式中, (kx, ky)为沿着x, y方向的空间波矢分量。

      在空气中传播距离d1后的物体光波场为:

      $ \begin{array}{c} u(\mathit{x}, \mathit{y}, {\mathit{d}_1}) = \int_{ - \infty }^{ + \infty } {\int_{ - \infty }^{ + \infty } U } \left( {{\mathit{\boldsymbol{k}}_x}, {\mathit{\boldsymbol{k}}_y}, 0} \right) \times \\ \exp \left[ {{\rm{i}}\left( {{\mathit{\boldsymbol{k}}_x}x + {\mathit{\boldsymbol{k}}_y}y + {\mathit{\boldsymbol{k}}_\mathit{z}}{\mathit{d}_1}} \right)} \right]{\rm{d}}{\mathit{\boldsymbol{k}}_x}{\rm{d}}{\mathit{\boldsymbol{k}}_\mathit{y}} \end{array} $

      (2)

      式中, kz2=k02-kx2-ky2k0为不同方向叠加的空间波矢,k0=2π/λ为光波在传播方向的波数,kz为沿着z方向的空间波矢分量, λ为照明光波波长。

      (2) 式表示物体光波场是由空间频率为(kx, ky)的无穷多组平面波沿不同传播方向的叠加,每组平面波可表示为[21-22]:

      $ \mathit{U}\left( {{\mathit{\boldsymbol{k}}_x}, {\mathit{\boldsymbol{k}}_y}, 0} \right){\rm{exp}}\left[ {{\rm{i}}\left( {{\mathit{\boldsymbol{k}}_x}x + {\mathit{\boldsymbol{k}}_y}y + {\mathit{\boldsymbol{k}}_\mathit{z}}\mathit{z}} \right)} \right] $

      (3)

      k02>kx2+ky2时,传播距离d1后其光场分布为:

      $ \begin{array}{c} \mathit{U}\left( {{\mathit{\boldsymbol{k}}_x}, {\mathit{\boldsymbol{k}}_y}, 0} \right){\rm{exp}}\left[ {{\rm{i}}\left( {{\mathit{\boldsymbol{k}}_x}x + {\mathit{\boldsymbol{k}}_y}y} \right)} \right] \times \\ {\rm{exp}}({\rm{i}}\sqrt {\mathit{\boldsymbol{k}}_0^2 - \mathit{\boldsymbol{k}}_\mathit{x}^2 - \mathit{\boldsymbol{k}}_\mathit{y}^2} {\mathit{d}_1}) \end{array} $

      (4)

      引入一个相位延迟因子,表示传播距离d1后只引起了各个频谱分量的相对相位,属于低空间频率分量的传输波。

      k02 < kx2+ky2=k//2时,为纯虚数,其中,传播距离d1后其光场分布为:

      $ \mathit{U}\left( {{\mathit{\boldsymbol{k}}_x}, {\mathit{\boldsymbol{k}}_y}, 0} \right){\rm{exp}}( - \mathit{\mu }{\mathit{d}_1}){\rm{exp}}\left[ {{\rm{i}}\left( {{\mathit{\boldsymbol{k}}_x}x + {\mathit{\boldsymbol{k}}_y}y} \right)} \right] $

      (5)

      此称为倏逝波,随着传播距离d1的增加,其振幅按指数规律衰减,当传播距离大于一个波长λ时很快衰减为0。由于d1?λ,倏逝波没有达到显微物镜面,不能参与远场成像。成像系统频谱分布如图 2所示。

      Figure 2.  The spectrum distribution of the imaging systems

      能参与远场成像的传输波被限制为k02>kx2+ky2,其最大的横向空间波矢为:

      $ {\mathit{\boldsymbol{k}}_{//, {\rm{max}}}} = {\mathit{\boldsymbol{k}}_0} $

      (6)

      因此, 远场成像的横向最高空间频率被限制在[7, 20-21]:

      $ {f_{//, {\rm{max}}}} = \frac{{{\mathit{\boldsymbol{k}}_{//, {\rm{max}}}}}}{{2{\rm{ \mathsf{ π} }}}} = \frac{1}{\mathit{\lambda }} $

      (7)

      图 2所示,横向频率小于1/λ时,为传输波; 横向频率大于1/λ时,为倏逝波,沿着传播方向衰减,在探测器处无法探测到。因此远场成像系统的空间分辨率为[7, 20]

      $ \mathit{\delta = }\frac{1}{{2{\mathit{f}_{//, {\rm{max}}}}}} = \frac{\mathit{\lambda }}{2} $

      (8)

      因此普通光学显微镜的极限分辨率为λ/2。由于倏逝波携带了纳米结构样品的更多亚波长细节信息,为了在远场实现超越衍射极限的分辨率,需要收集到倏逝波。

    • 当横向波矢量满足k02 < kx2+ky2=k//2时,由(5)式可知,在传播距离为λ处倏逝波会衰减为0,在远场不能参与成像。当将微球放置于物体的表面, 如图 3所示。为了简单起见,分析y=0的情况。半径为R、折射率为n的微球放置于物体的表面,其与物体的接触点为O。取微球边缘的P点作为入射点,由于倏逝波在空气中传播波长λ的距离处时会衰减为0,因此需满足h < λ,其中hP点到物体表面的垂直距离。uw分别表示过P点的切向和法向方向,wz之间的夹角为θ。在空气中,k0分解到xy方向的波矢量分别为kxky

      Figure 3.  The simplified model of the microsphere-based optical microscopic imaging system

      微球中,分解到uw方向的波矢量分别为kukw,且满足:

      $ \mathit{\boldsymbol{k}}_u^2 + \mathit{\boldsymbol{k}}_w^2 = {\mathit{n}^2}\mathit{\boldsymbol{k}}_0^2 $

      (9)

      当倏逝波入射到微球时,通过Snell定量可知,微球内沿着u方向的波矢量ku可以表示为[18-19]

      $ \begin{array}{c} \mathit{\boldsymbol{k}}_u^2 = \mathit{\boldsymbol{k}}_x^2{\rm{co}}{{\rm{s}}^2}\mathit{\theta + }\mathit{\boldsymbol{k}}_\mathit{z}^2{\rm{si}}{{\rm{n}}^2}\mathit{\theta } = \\ \mathit{\boldsymbol{k}}_x^2{\rm{co}}{{\rm{s}}^2}\mathit{\theta } - {\left| {{\mathit{\boldsymbol{k}}_z}} \right|^2}{\rm{si}}{{\rm{n}}^2}\mathit{\theta } \end{array} $

      (10)

      kx2cos2θ-|kz|2sin2θ>n2k02时,传播到微球中仍然为倏逝波,在远场衰减为0。

      kx2cos2θ-|kz|2sin2θ < n2k02时,在微球中将倏逝波转换成了传输波。因此,倏逝波通过微球后,微球将部分倏逝波转换成传输波,通过显微物镜成像在探测器上。f为显微物镜的焦距,d1d2同样满足物像关系。由此可得kx满足如下的关系[18-20]

      $ \mathit{\boldsymbol{k}}_0^2 \le \mathit{\boldsymbol{k}}_x^2 \le \frac{{\mathit{\boldsymbol{k}}_0^2({\mathit{n}^2} - {\rm{si}}{{\rm{n}}^2}\mathit{\theta })}}{{1 - 2{\rm{si}}{{\rm{n}}^2}\mathit{\theta }}} $

      (11)

      式中, ,代入(11)式可得:

      $ \mathit{\boldsymbol{k}}_x^2 \le \frac{{\mathit{\boldsymbol{k}}_0^2({\mathit{n}^2}\mathit{R} - 2\mathit{h})}}{{\mathit{R} - 4\mathit{h}}} $

      (12)

      物体散射后产生的倏逝波在微球里传播与微球的半径和折射率有关,且需满足(12)式。

      由(12)式可知,通过微球后可获得最大的空间频率为:

      $ {\mathit{f}_{{\rm{max}}}} = \frac{{{\mathit{\boldsymbol{k}}_{//, {\rm{max}}}}}}{{2{\rm{ \mathsf{ π} }}}} = \frac{1}{\mathit{\lambda }}\sqrt {\frac{{{\mathit{n}^2}\mathit{R} - 2\mathit{h}}}{{\mathit{R} - 4\mathit{h}}}} $

      (13)

      微球光学显微成像系统可分辨的最小距离为:

      $ \mathit{d} = \frac{1}{{2{\mathit{f}_{{\rm{max}}}}}} = \frac{\mathit{\lambda }}{2}\sqrt {\frac{{\mathit{R} - 4\mathit{\lambda }}}{{{\mathit{n}^2}\mathit{R} - 2\mathit{\lambda }}}} $

      (14)

      由(14)式可知,微球光学显微成像系统可分辨的最小距离与微球的折射率和半径有关。由于n2R-2λ-(R-4λ)>0,由(14)式可得:

      $ d < \frac{\mathit{\lambda }}{2} $

      (15)
    • 利用COMSOL Multiphysics软件来分析微球的光纳米喷射特性。用波长为400nm的平行光照射折射率为1.46、半径分别为5μm和26.5μm的二氧化硅微球以及折射率为2、半径为26.5μm的钛酸钡微球后,产生的光纳米喷射结果分别如图 4a图 4b图 4c所示。分别在其光纳米喷射光斑的最大光强处作出沿着竖直方向上的强度分布如图 5所示。仿真结果表明,微球对平行光产生光纳米喷射的作用,且其光纳米喷射光斑的半径小于λ/2;从仿真结果图 4a图 4b图 5可以看出,对相同折射率不同半径的微球,光喷射的尺寸随着微球半径的增大而增大;从图 4b图 4c图 5可以看出,对相同半径不同折射率的微球,光喷射的尺寸随着折射率的增大而减小,说明微球具有收集倏逝波的作用。当成像系统中加入微球后可以使其分辨率突破衍射极限。

      Figure 4.  Simulation results of the photonic nanojet by the microspheres

      Figure 5.  The intensity distribution of the photonic nanojet in the maximum intensity along the vertical direction

    • 将钛酸钡微球与光学显微镜组合成远场超分辨率成像系统,其实验光路如图 6所示。所用的光学显微镜为OLYPUS BX51,显微物镜的数值孔径(numerical cperture, NA)为0.9,放大倍数为100×。实验中利用反射模式,中心波长为600nm的卤素灯作为光源; 显微镜的极限分辨率为406.6nm; 线宽为200nm、间隔为100nm的蓝光光盘作为被测对象。通过扫描电子显微镜(scanning electron microscopy, SEM)测得的蓝光光盘的结构如图 7a所示。由于蓝光光盘尺寸小于显微镜的极限分辨率,直接在显微镜下观察不到蓝光光盘的细节信息如图 7b所示。从仿真结果图 4可知, 折射率为1.46、半径为5μm的二氧化硅微球与折射率为2、半径为26.5μm的钛酸钡微球产生的光喷射尺寸相近,且都小于折射率为1.46、半径为26.5μm的二氧化硅微球。为了得到大视场的超分辨率成像,实验研究中所选用的微球参量为折射率为2、半径为26.5μm的钛酸钡微球,微球直接在显微镜下的成像如图 7c所示。在实验前将蓝光光盘上面的保护膜去掉,并将微球用去离子水稀释后,滴到蓝光光盘的表面上,等水蒸发完后,将微球半浸没在无水的乙醇溶液中。

      Figure 6.  The light path diagram of the microsphere-based far-field super-resolution imaging system

      Figure 7.  The imaging results of the blu-ray disc

      通过微球结合光学显微镜的成像系统得到蓝光光盘的像如图 7d所示。图 7e图 7d方框区域的放大图。从图 7e可以看出, 蓝光光盘的细节信息被清晰分辨。实验结果说明, 实验中加入微球后可将携带物体细节信息的倏逝波转换成传输波参与远场成像,实现了样品的超分辨率成像。

    • 针对对微纳结构元器件结构检测精度高、速度快的需求,设计了一套基于微球与传统光学显微镜相结合的远场超分辨率成像系统,并分析了该成像系统的实现远场超分辨率成像的物理机理。利用微球对平行光产生光纳米喷射的特性,将携带物体高频细节信息的倏逝波转换成传输波,然后传输波通过显微物镜在光电探测器处成像实现远场超分辨成像;实验中实现了对蓝光光盘的远场超分辨率成像,获得了100nm的分辨率。由于微球具有球对称性,其可以实现各个方向的超分辨率成像。

      该成像方法具有系统结构简单、成本低等优点,可以应用于对微纳元件结构的检测、光刻技术、生物医学等领域。

参考文献 (22)

目录

    /

    返回文章
    返回